247 research outputs found

    Reliable and Energy Efficient MLC STT-RAM Buffer for CNN Accelerators

    Get PDF
    We propose a lightweight scheme where the formation of a data block is changed in such a way that it can tolerate soft errors significantly better than the baseline. The key insight behind our work is that CNN weights are normalized between -1 and 1 after each convolutional layer, and this leaves one bit unused in half-precision floating-point representation. By taking advantage of the unused bit, we create a backup for the most significant bit to protect it against the soft errors. Also, considering the fact that in MLC STT-RAMs the cost of memory operations (read and write), and reliability of a cell are content-dependent (some patterns take larger current and longer time, while they are more susceptible to soft error), we rearrange the data block to minimize the number of costly bit patterns. Combining these two techniques provides the same level of accuracy compared to an error-free baseline while improving the read and write energy by 9% and 6%, respectively

    Divisible load scheduling of image processing applications on the heterogeneous star and tree networks using a new genetic algorithm

    Get PDF
    The divisible load scheduling of image processing applications on the heterogeneous star and multi-level tree networks is addressed in this paper. In our platforms, processors and network links have different speeds. In addition, computation and communication overheads are considered. A new genetic algorithm for minimizing the processing time of low-level image applications using divisible load theory is introduced. The closed-form solution for the processing time, the image fractions that should be allocated to each processor, the optimum number of participating processors, and the optimal sequence for load distribution are derived. The new concept of equivalent processor in tree network is introduced and the effect of different image and kernel sizes on processing time and speed up are investigated. Finally, to indicate the efficiency of our algorithm, several numerical experiments are presented

    Camera calibration of long image sequences with the presence of occlusions

    Get PDF
    Camera calibration is a critical problem in applications such as augmented reality and image based model reconstruction. When constructing a 3D model of an object from an uncalibrated video sequence, large amounts of frames and self occlusions of parts of the object are common and difficult problems. In this paper we present a fast and robust algorithm that uses a divide and conquer strategy to split the video sequence into sub-sequences containing only the most relevant frames. Then a robust stratified linear based algorithm is able to calibrate each of the subsequences to a metric structure and finally the subsequences are merged together and a final non-linearoptimization refines the solution. Examples of real datareconstructions are presented.Postprint (author’s final draft

    Voltage island based heterogeneous NoC design through constraint programming

    Get PDF
    This paper discusses heterogeneous Network-on-Chip (NoC) design from a Constraint Programming (CP) perspective and extends the formulation to solving Voltage-Frequency Island (VFI) problem. In general, VFI is a superior design alternative in terms of thermal constraints, power consumption as well as performance considerations. Given a Communication Task Graph (CTG) and subsequent task assignments for cores, cores are allocated to the best possible places on the chip in the first stage to minimize the overall communication cost among cores. We then solve the application scheduling problem to determine the optimum core types from a list of technological alternatives and to minimize the makespan. Moreover, an elegant CP model is proposed to solve VFI problem by mapping and grouping cores at the same time with scheduling the computation tasks as a limited capacity resource allocation model. The paper reports results based on real benchmark datasets from the literature. © 2014 Elsevier Ltd. All rights reserved

    Efficient mapping of hierarchical trees on coarse-grain reconfigurable architectures

    Full text link
    Reconfigurable architectures have become increasingly important in recent years. In this paper we present an approach to the problem of executing 3D graphics interactive applications onto these architectures. The hierarchical trees are usually implemented to reduce the data processed, thereby diminishing the execution time. We have developed a mapping scheme that parallelizes the tree execution onto a SIMD reconfigurable architecture. This mapping scheme considerably reduces the time penalty caused by the possibility of executing different tree nodes in SIMD fashion. We have developed a technique that achieves an efficient hierarchical tree execution taking decisions at execution time. It also promotes the possibility of data coherence in order to reduce the execution time. The experimental results show high performance and efficient resource utilization on tested applications

    Business-to-business open innovation: COVID-19 lessons for small and medium-sized enterprises from emerging markets

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordSmall and medium-sized enterprises (SMEs) from emerging markets are the most vulnerable types of firms, especially in times of crisis due to time and resource constraints. Thus, this paper aims to help SMEs from emerging markets in choosing the right business partners with whom to cooperate to develop relevant innovations in crisis periods in general, and during the COVID-19 pandemic in particular. To obtain relevant insights, qualitative data from SMEs in Bosnia and Herzegovina were collected in March-April 2020. The findings show that SMEs have embraced new collaborations with business customers and competitors, and developed a collaborative mindset opposed to the traditionally competitive way of doing business in emerging markets. Based on the findings, this paper presents a set of recommendations for managers, and suggests several future research opportunities around the management of openness in the context of SMEs from emerging markets

    Green chemistry and coronavirus

    Get PDF
    The novel coronavirus pandemic has rapidly spread around the world since December 2019. Various techniques have been applied in identification of SARS-CoV-2 or COVID-19 infection including computed tomography imaging, whole genome sequencing, and molecular methods such as reverse transcription polymerase chain reaction (RT-PCR). This review article discusses the diagnostic methods currently being deployed for the SARS-CoV-2 identification including optical biosensors and point-of-care diagnostics that are on the horizon. These innovative technologies may provide a more accurate, sensitive and rapid diagnosis of SARS-CoV-2 to manage the present novel coronavirus outbreak, and could be beneficial in preventing any future epidemics. Furthermore, the use of green synthesized nanomaterials in the optical biosensor devices could leads to sustainable and environmentally-friendly approaches for addressing this crisis. © 202
    corecore